quotient norm - определение. Что такое quotient norm
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое quotient norm - определение

EXPRESSION IN CALCULUS
Newton's quotient; Newton's difference quotient; Difference Quotient; Newton quotient; Fermat's difference quotient

Matrix norm         
NORM ON A VECTOR SPACE OF MATRICES
Frobenius norm; Matrix p-norm; Matrix norms; Spectral norm; Frobenius matrix norm; Induced norm; Trace norm; Sub-multiplicative norm; Submultiplicative norm; Nuclear norm; Subordinate norm
In mathematics, a matrix norm is a vector norm in a vector space whose elements (vectors) are matrices (of given dimensions).
Norm (group)         
IN GROUP THEORY, CHARACTERISTIC INTERSECTION OF THE NORMALIZERS OF ALL ITS SUBGROUPS
Baer norm
In mathematics, in the field of group theory, the norm of a group is the intersection of the normalizers of all its subgroups. This is also termed the Baer norm, after Reinhold Baer.
Quotient space (linear algebra)         
VECTOR SPACE CONSISTING OF AFFINE SUBSETS
Linear quotient space; Quotient vector space
In linear algebra, the quotient of a vector space V by a subspace N is a vector space obtained by "collapsing" N to zero. The space obtained is called a quotient space and is denoted V/N (read "V mod N" or "V by N").

Википедия

Difference quotient

In single-variable calculus, the difference quotient is usually the name for the expression

f ( x + h ) f ( x ) h {\displaystyle {\frac {f(x+h)-f(x)}{h}}}

which when taken to the limit as h approaches 0 gives the derivative of the function f. The name of the expression stems from the fact that it is the quotient of the difference of values of the function by the difference of the corresponding values of its argument (the latter is (x + h) - x = h in this case). The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h).: 237  The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change.

By a slight change in notation (and viewpoint), for an interval [a, b], the difference quotient

f ( b ) f ( a ) b a {\displaystyle {\frac {f(b)-f(a)}{b-a}}}

is called the mean (or average) value of the derivative of f over the interval [a, b]. This name is justified by the mean value theorem, which states that for a differentiable function f, its derivative f′ reaches its mean value at some point in the interval. Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates (a, f(a)) and (b, f(b)).

Difference quotients are used as approximations in numerical differentiation, but they have also been subject of criticism in this application.

Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h.

The difference quotient is sometimes also called the Newton quotient (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat).